A SCOPING REVIEW: IMPACT OF MALARIA IN PREGNANCY

Harlinda Widia Putri1, Herlin Fitriana Kurniawati2, Ismarwati3.
1Candidate of Master Midwifery Universitas 'Aisyiyah Yogyakarta
2Faculty of Health Sciences, Universitas ‘Aisyiyah Yogyakarta
3Faculty of Health Sciences, Universitas ‘Aisyiyah Yogyakarta
Email : hardiatri2@gmail.com, herlinana@gmail.com, ismarwati@unisayogya.ac.id

ABSTRACT
Based on world malaria reports, the most malaria cases are in the African region, followed by the Eastern Mediterranean region and Southeast Asia region. Twenty-nine countries account for global malaria cases. In the Asia-Pacific region, the rate of malaria transmission is relatively low when compared to sub-Saharan Africa, but it is basically the same as the malaria problem in Africa because the harmful effects of malaria in various regions remain the same. The process of pregnancy can aggravate malaria cases; pregnant women suffering from malaria will affect the process of pregnancy and the fetus and baby born. This Scoping Review aims to synthesize research evidence and categorize research articles on the impact of malaria on pregnant women and their babies in Asia-Pacific countries. Literature search was carried out using the PRISMA flowchart guidelines which were applied to present the article search flow. The synthesis shows 11 articles obtained from the search process. This review raises 6 themes, namely: anemia, low birth weight, premature birth, malaria in infants, placental malaria, and primigravida. The impact of malaria in pregnancy that most often occurs in pregnant women is anemia, low birth weight, premature birth, placental malaria, and malaria in infants.

INTRODUCTION
Malaria is an infectious disease caused by plasmodium parasites that live and reproduce in human red blood cells. Malaria is transmitted by female Anopheles mosquitoes that contain plasmodium. There are four different species of malaria in humans namely plasmodium falciparum, plasmodium vivax, plasmodium malariae and plasmodium ovale, of which plasmodium falciparum and plasmodium vivax are the most common and plasmodium falciparum the most dangerous and the greatest threat (WHO, 2015).

The World Malaria Report 2020 states that in 2019 an estimated 229 million cases of malaria occurred worldwide. The most malaria cases were in the African region with 215 million or 94%, followed by the East Mediterranean region with 26%, and the Southeast Asia region with 3% of cases. Twenty-nine countries account for 95% of malaria cases globally. Five countries account for more than half of all malaria cases worldwide: Nigeria (27%),
Democratic Republic of Congo (12%), Uganda (5%), and Mozambique (4%), and Niger (3%) (WHO, 2020). In 2019 there were 409,000 deaths from malaria globally. An estimated 33 million pregnancies of which 35% (12 million) were exposed to malaria infection during pregnancy, and gave birth to about 822,000 low birth weight children (16% of all low birth weight children) while Central Africa has the highest prevalence of low birth weight children due to malaria in pregnancy (WHO, 2020). Transmission rates are relatively low in the Asia-Pacific region compared to sub-Saharan Africa. The perception of malaria in the Asia-Pacific region as a problem is not serious enough, but it is basically the same as the malaria problem in Africa because the risk of danger posed by malaria in various regions remains the same (Baird, 2017).

Malaria in pregnancy endangers the health of the mother and places her at a greater risk of death and impacts on the health of the fetus, causing prematurity and low birth weight as major contributors to neonatal and infant mortality (WHO, 2019). The process of pregnancy will exacerbate malaria cases experienced by pregnant women. A pregnant woman who suffers from malaria will affect the process of pregnancy and affect the condition of her fetus and newborn baby. Malaria infection in pregnant women can cause anemia in the mother and fetus, as well as babies with low birth weight. The risk of low birth weight infants (LBW) in mothers with malaria increased two times compared to pregnant women without malaria. This can increase maternal and infant mortality. Complications of malaria infection in pregnancy can include abortion, low birth weight babies, anemia, pulmonary edema (swelling or accumulation of fluid in the lung tissue), impaired kidney function, and congenital malaria (Budiyanto & Wuriastuti, 2017).

In multigravida, pregnancy-specific immunity to disease is usually developed or through self-protection, but is completely absent in primigravida (Aguzie et al., 2017). Primigravida were more frequently infected with a higher density of parasites in the placenta than multigravida. Primigravida are at dangerous risk, and can be complicated by severe maternal anemia, which can cause postpartum hemorrhage and even lead to low birth weight (LBW) babies (Fried & Duffy, 2017).

In the study showed that microscopy infection by P. falciparum and P. vivax was associated with maternal age, decreased levels of hemoglobin in the blood, low birth weight, high risk for low birth weight, gestational age, and preterm birth. In this study, it was observed that pregnant women infected with malaria had a 2-fold higher risk of anemia than women who were not infected (Vásquez et al., 2020). Malaria in pregnant women living in areas of low transmission also found that a high prevalence of antibodies indicated a significant exposure of pregnant women to Plasmodium Malaria. Malaria appears to be benign in the study area because it does not cause symptoms in patients, but pregnant women who are detected to have Plasmodium in their blood should be treated immediately, because they can contribute to malaria transmission (Hristov et al., 2014). The results of the study on 1,451 placentas of pregnant women who had a history of malaria, Placental Malaria infection was detected in 269 (18.5%), of which 54 (3.7%) were acute, 55 (3.8%) chronic, and 160 (3.7%) were chronic. 11.0%) is malaria infection during pregnancy. Risk factors for placental malaria included living in a rural area (adjusted odds ratio (AOR) 3.65, 95% CI 1.76–7.51; p 0.001), primigravida (AOR 2.45, 95% CI 1.26–4.77; p = 0.008) and had symptoms of malaria during pregnancy (AOR 2.05, 95% CI 1.16–3.62; p = 0.013).
compared with uninfected women, acute infection (AOR 1.97, 95% CI 0.98-3.95; p = 0.056) was associated with low birth weight infants, whereas chronic infection was associated with preterm delivery (AOR 3.92, 95% CI 1.64–9.38; p = 0.002) and anemia (AOR 2.22, 95% CI 1.02–4.84; p = 0.045) (Lufele et al., 2017).

Based on this background, the research question is how the impact of malaria in pregnancy is obtained. The purpose of this scoping review is to synthesize research evidence and categorize or categorize research articles on the impact of malaria on pregnant women and their babies, as well as the impact of malaria on the incidence of anemia, low birth weight, premature birth, placental malaria, and malaria in infants.

METHOD

This study uses a scoping review method. Scoping review method is used to synthesize research evidence and classify existing research articles. The PEOs method was used to obtain the focus of the review and research questions. The literature search uses a search system on the EBSCO, ScienceDirect, PubMed and Google Scholar databases. The keywords used in the search for articles in the EBSCO database are “Pregnancy OR Pregnant Woman OR Malaria OR Plasmodium Vivax OR Plasmodium Falciparum OR Plasmodium Ovale OR Plasmodium Malariae OR Plasmodium Knowlesi AND Impact AND Asia Pacific OR asia-Pacific” in the ScientoDirect database and PubMed which limits the use of Boolean researchers use the keywords “Pregnancy Associated Malaria AND Asia Pacific OR asia-Pacific”.

Inclusion and exclusion criteria were used in the selection of articles. PRISMA Flowchart is applied to present article search flow. Critical appraisal is carried out to assess the quality of the articles to be used by using assessment tools from Hawker, S. et al. 2002 - Criteria for Quality of the Paper Appraisal.

RESULTS

Based on the results of the synthesis, 11 articles were obtained that matched the research criteria, as shown in the following table:

Table 1. Data Charting

<table>
<thead>
<tr>
<th>N</th>
<th>Title</th>
<th>C</th>
<th>Objective</th>
<th>Type of research</th>
<th>Participants</th>
<th>Results Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Based on the background, the research question is how the impact of malaria in pregnancy is obtained. The purpose of this scoping review is to synthesize research evidence and categorize or categorize research articles on the impact of malaria on pregnant women and their babies, as well as the impact of malaria on the incidence of anemia, low birth weight, premature birth, placental malaria, and malaria in infants.
| Risk factors for malaria and adverse outcomes in a prospective cohort of pregnant women resident in a high malaria transmission area of Papua New Guinea/Stanisic et al./2015/AN (Stanisic et al., 2015) |
|---|---|---|---|---|---|
| Pa| pu| To| dte| en| wom |
| a| rm| nt| n/4| en| led. |
| Ne| ho| Wo| me| git| Data |
| Val| e| me| n| dan| from |
| ne| G| r| the| deliv| ery |
| Birth| a| fact| ern| ity| were |
| Risk| m| nal| mat| the| deliv |
| Prospective cohort analysis| n/3| (69.7)| 328 |
| Ces| 69.7 |
| % |
Of	On;	micr
Collaborative	ara	osco
Of	duri	py
Plasmodium	ng	34.4
Men	ncy	328
Residency in	dan	wom
High	en	had
Malparasitemia	aria	mala
Transmission	ce	ria
Parasitemia	GN	itae
Area of	G	mia
Papua/	men	t
New Guinea/ne/	(AN/	C)
Standard/i	and	12.5
et	%	
2015/	41/3	(28)
5/	470	2
2022		

Data were collected from the delivery unit. On microscopy, 34.4% (113/328) of the women had malaria parasites at enrolment (AN C) and 12.5% (41/328) at delivery; each time, PCR detected subantimal parasitemia more sub-

Most infections occurred with Plasmodium falciparum; the remainder were dominated by P. vivax. Anemia and smoking were associated with low birth weight, and low birth weight (16.7%; 51/305) and preterm delivery (21.8%; 47/220) was associated with Plasmodium falciparum parasitemia.
Histopathological diagnosis of chronic placental malaria was associated with LBW (adjusted odds ratio [aOR] 3.3; p=0.048) and preterm delivery (aOR 4.2; p=0.01).

Lack of maternal education tends to cause premature labor.

Submicroscopic plasmodium parasitaemia during delivery appears to increase the risk of LBW. Of the genetic polymorphisms, South Asian ovalocytosis, + - thalassaemia and complement receptor 1 deficiency, heterozygous genotype CR1.
was associated with a reduced risk of anemia and a substantial but insignificant effect was noted in other comparisons.

2. Prevalence of Malariainfection and Risk Factors Associated with Anemia among Pregnant Women in Semiurban India

Evaluation of the interaction between anemia, pregnancy, and asymptomatic malaria, stratified by clinical groups showed the prevalence of MIP was 5.4% and 4.3% in ANC and delivery units, and 13.2% of malaria occurred in women without pregnancy, respectively. The majority were infected with asymptomatic Plasmodium vivax (more than 85%) in the ANC and delivery units. Periphereal parasitaemia was significantly associated with fever in the last week, subjects of rural origin, and first/second pregnancy. The study was conducted in the adult population living in areas of P. vivax transmission and prevalence of P. falciparum. The majorities were infected with asymptomatic P. vivax (more than 85%) in the ANC and delivery units.
the multivariate analysis, with the highest risk factor associated with fever followed by the rural population. Strikingly in the cohort, anemia was common in 86% in the ANC unit compared with 72% in the delivery unit, while severe anemia was 3.6% and 7.8% in the ANC unit and delivery unit, respectively. The prevalence of anemia was higher in the MIP group (88% and 89% in the ANC and delivery units), while severe anemia was 23% and 21%, respectively.
What is the burden of submicroscopic malaria in pregnancy in central India? (Singh et al., 2015)

A3

Study: Cross-sectional prenatal women/24 and maternity/948 pregnant women, ie 2477 from the ANC unit and 948 from the delivery unit who had micr oscopy and PCR samples.

The polymerase chain reaction detected significantly more Plasmodium infection than traditional light microscopy of both peripheral blood samples (3.4 vs 1.2%; OR 2.9, 95% confidence intervals (CIs) 1.9–4.5) and placenta (4.2 vs 1.7%; OR 2.5, 95% CIs 1.4–4.8) blood samples. Submicroscopic infection was not associated with anemia or severe malaria among ANC or delivery women.
ery participants and was not associated with low birth weight (LBW) among delivery participants.

In contrast, microscopically detectable infections were associated with severe anaemia and low birth weight.

4. Plasmodium knowlesi and Malarias During Pregnancy/Barber et al./2015/Malaysia To compare the risks and consequences of knowlesi malaria during pregnancy.

Study Cohort Women/774 During 2012-2013, 774 women were notified, 252 (33%), 172 (20%), 333 (43%), and 17 (2%) with Plasmodium falciparum infection, Plasmodium vivax infection,Plasmodium malariae/Plasmodium knowlesi.
Among women aged 15-45 years, pregnancy was reported in 18 of 124 (14.5%), 9 of 93 (9.7%), and 4 of 151 (2.6%) P. falciparum, P. vivax, and P. malariae/knowlesi respectively (P = 0.002).

The women with knowlesi malaria were confirmed to be pregnant: 2 had moderate anaemia, and 1 gave birth to a premature baby with low birth weight. There were 17, 7, and 0 pregnant women with falciparum, vivax, and knowlesi malaria identified from...
<table>
<thead>
<tr>
<th>5</th>
<th>Placental weight ratio affects placental mRNA expression of insulin-like growth factor-I (IGF-I) and leptin receptors in Plasmodium falciparum infected pregnant women.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Previous prevalence of malaria in pregnant women in southern Laos was determined by symptom and/or clinical features.</td>
</tr>
</tbody>
</table>
al., 2016) or untransmissible: RT-qPCR Result: 11 Plasmodium vivax infections and 1 Plasmodium vivax/Plasmodium falciparum infection, of whom 9 sub-microscopic (not detectable by thick blood smear). This history of malaria during pregnancy was likely to be associated with a higher risk of Malaria In Pregnancy (aIR 3.05; 95% CI 0.94-9.88). At delivery, two sub-microscopic infections (one periphereal and one placental) were detected (4.5%; 0.6-15.5) in the Vapi District. In both surveys, all infected
Women stated that they slept under mosquito nets the night before the survey, and 86% went to the forest in search of food 1 week before the survey in the median. The majority of infections (94%) were asymptomatic and half were associated with anemia. Over all, 24% of women gave birth to LB Wet babies. Factors associated with a higher risk of LB Wet were tobacco use (aIR R 2.43; 95% CI 1.64 – 3.60) and premature birth (aIR R 3.17; 95% CI 2.19 – 4.57). Factors associated with a
higher maternal risk of anemia were the absence of iron supplementation during pregnancy, Lao Theung ethnicity and place of residence.

7. High burden of malaria and anemia among tribal pregnant women in a chronic conflict corridor

In India/Correa et al/2017/A7 in their first and second pregnancies, respectively. Upper Arm Circumference (LILAC) was below 230 mm in 74% of them. The prevalence of anemia was 92.4% (95% Confidence Interval: 89.9-94.3) whereas severe anemia was identified in 29% and 22% among women in their first and second pregnancies, respectively.
The prevalence of malaria was 29.3% (95% CI: 25.7-33.2) with 64% caused by isolated *P. falciparum*, 35% by *P. falciparum* or mixed malaria and 1% by *P. vivax*, *P. ovale*, *P. malariae*, or *P. malariae* or *P. ovale*. The malaria test was positive in 6.9% of patients. Malaria was associated with severe anemia (prevalence ratio: 2.56, 95% CI: 1.40 - 4.66, p < 0.01).

<table>
<thead>
<tr>
<th>Risk factors</th>
<th>Placental malaria</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM infection</td>
<td>Of the 1451 placenta examined, PM infection was detected in 269 (18.5%), in 21/269 acute malaria cases, 20.8% of asymptomatic cases were acute malaria.</td>
</tr>
</tbody>
</table>

International Journal of Nursing and Midwifery Science (IJNMS), Volume 6, Issue 1, April 2022
Papuan women /Lufe et al./2017/A8 (Lufe et al., 2017) were born with placental malaria who received at least one dose of treatment. Intermittent prevention during pregnancy (IP) and sleeping under Insecticide treated nets (3.8% chronic, and 160 (11.0% were children) and received infections. then. PM risk factors included living in a rural area (adjusted odds ratio (AOR) 3.65, 95% CI 1.76–7.51; p = 0.001), primigravida (AOR 2.45, 95% CI 1.26–4.77; p = 0.008) and had symptoms of malaria during pregnancy (AOR 2.05, 95% CI 1.16–3.62; p = 0.013). After adjustment for covariates, compared with uninfected women, acute infection (AOR 1.97, 95% CI 0.98–3.95; p = 0.056) was associated with low birth weight infants.
Iron deficiency during pregnancy is associated with a reduced risk of adverse birth outcomes in a malaria-endemic area in a longitudinal cohort study (*Fowkes et al.*, 2018/A9). To investigate the association between iron deficiency and delivery outcomes, and to measure how malaria interventions the relationship, in a study Longitudinal study of pregnant women in malaria (*Sudi* *Cor* *Pre* *gna* *nt* *woma* *n* /1/). Where chronic infection was associated with preterm delivery (AOR 3.92, 95% CI 1.64–9.38; *p* = 0.002), and anemia (AOR 2.22, 95% CI 1.02–4.84; *p* = 0.045).

Iron deficiency was common (71% at enrollment) and was associated with a higher mean birth weight (230 g; 95% confidence interval, CI 118, 514; *p* < 0.001), and a decreased likelihood of LBW (adjusted odds ratio, aOR 2.1).
emigo of Pap and Ne w (PN G), which has the largest pop ulation. The magnitude of the greatest influence on primigravida (birth weight 351 g; 95% CI 188.514; p < 0.001; LB W aOR 0.26; 95% CI 0.10, 0.66; p = 0.005; PTB aOR = 0.39, 95% CI 0.16, 0.97; p = 0.042. Sequential analysis showed that the protective association of iron deficiency in LB W was mainly mediated through mechanisms independent of malaria or anemia.
The impact of malaria in pregnancy on infant susceptibility to malaria infection/
Indranti et al./2018/A10 (Indranti et al., 2018)

Purpose

To determine the impact of malaria during pregnancy on the baby's susceptibility to malaria infection, the time of occurrence, and the number of malaria infections during pregnancy.

Methodology

One hundred and seventy-eight infants consisted of 95 (53.37%) babies born to mothers with malaria and 83 (46.63%) without malaria. 91 (51.12%) boys and 87 (48.88%) children were included in this study. The mean maternal age was 25.3 ± 5 years vs. 26.0 ± 6.30 years. At the ages of 6 months, infants born to malaria-positive mothers were more susceptible to malaria infection than infants born to malaria-negative mothers with RR = 3.49; 95% CI: 1.02-11.96; p = 0.03.
The independent risk factor for infant susceptibility to malaria infection during the first year of life was malaria in pregnancy (MiP) in the second trimester (RR = 4.50; 95% CI: 1.5-13.4; p = 0.07), and ethnic Papuans (RR = 3.58; 95% CI: 1.22-10.5; p = 0.02).

<table>
<thead>
<tr>
<th>Malarial Anemia</th>
<th>To Find Out Pre</th>
<th>Of the 105 Pregnant Women</th>
<th>Of the 71 Infected Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mother</td>
<td>Pregnancy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pregnant Woman</td>
<td>Only Contracted</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Once During Pregnancy</td>
<td>2.95; 95% CI: 1.04-8.33; p = 0.04</td>
<td>3.58; 95% CI: 1.22-10.5; p = 0.02</td>
</tr>
</tbody>
</table>
A11 (Chandrakeshwar et al., 2009)

diarial anemia, and its intensity in pregestational women in endemic areas of the city of Mangaluru.

Cross-sectional study of which (48, 67.6%) had Plasmodium vivax, (13, 18.3%) Plasmodium falciparum and (10, 14.1%) mixed infections. Among those infected, 87.3% had anemia, 11.3% had severe anemia. In particular, malaria infection was high in primigravida women (40.6%).

Lack of knowledge about preventive measures and lack of awareness about antenatal care services, especially among rural women, are the main determinants of the occurrence...
DISCUSSION

Based on the 11 articles obtained, as many as 7 articles came from the Southeast Asian region which includes Indonesia, Malaysia, Laos, and Papua New Guinea. In the South Asian region there are 4 articles, all of which are from India. The article uses a quantitative research study, with a cohort study design of 5 articles, a cross-sectional study of 5 articles, and a descriptive study of 1 article. In 2015 there were 4 articles published, in 2016 there were 2 articles, in 2017 there were 2 articles, in 2018 there were 2 articles, and in 2019 there were 1 article.

Malaria in pregnancy is a clinical condition in which a pregnant woman is infected with the *Plasmodium* parasite that causes malaria. Malaria in pregnancy can harm pregnant women and their fetuses (Djabanor et al., 2017). Based on the results of the review of research articles, several themes were found that could answer the objectives and questions of this scoping review, namely: anemia, low birth weight, premature birth, malaria in infants, placental malaria, and primigravida.

Anemia

Pregnant women generally will experience mild anemia, especially in primigravida women (Fowkes et al., 2018). Women who did not take iron supplements during pregnancy had a 58% higher risk of anemia than women who took iron supplements (Briand et al., 2016). Women who have had malaria are more likely to experience anemia than women without malaria (Sohail et al., 2015). Women who detected malaria microscopically had significantly lower mean hemoglobins. The likelihood of severe anemia is much higher in women with microscopically detectable malaria infection (Singh et al., 2015). Active cases of malaria in endemic areas are not the cause of most cases of anemia, but contribute to the incidence of severe anemia (Corrêa et al., 2017). In *Plasmodium falciparum* infection, pregnant women living in areas with unstable malaria transmission are at risk for severe disease complications, including severe anemia (Barber et al., 2015). Low Hb levels and malaria infection during pregnancy and delivery result in reduced birth weight and an increased risk of low birth weight and premature delivery (Stanisic et al., 2015). Anemia can also cause placental malaria infection, a significant decrease in maternal hemoglobin levels results in moderate to severe anemia compared to those without placental malaria infection (Lufele et al., 2017). Malaria anemia during pregnancy can cause life-threatening conditions for both mother and fetus (Chandrashekar et al., 2019).

Low Birth Weight Baby

Women infected with malaria during pregnancy are at risk of giving birth to babies with low birth weight (Chandrashekar et al., 2019). Malaria infection results in adverse pregnancy outcomes including low birth weight and prenatal death (Barber et al., 2015). Decreased birth weight and increased risk of low birth weight are caused by low maternal Hb levels and malaria infection during pregnancy and childbirth (Stanisic et al., 2015). Malaria infection of the placenta can also cause low birth weight (Lufele et al., 2017). Placental infections that are detected microscopically are more likely to give birth to babies with low birth weight. Sub-microscopic placental infection was not associated with an increased risk of LBW
LBW is a major risk factor in infant morbidity and mortality. Iron deficiency in the mother can cause the baby to be born with low birth weight. In malaria endemic areas iron deficiency and anemia often occur, resulting in poor birth outcomes (Fowkes et al., 2018), but low birth weight can also be associated with malnutrition in pregnant women (Briand et al., 2016).

Premature Birth

Women infected with malaria during pregnancy are at risk of Intrauterine Growth Restriction (IUGR) and the risk of preterm delivery which is also associated with umbilical cord parasitemia (Chandrashekar et al., 2019) resulting in adverse pregnancy outcomes including low birth weight and prenatal death (Barber et al., 2019). Low Hb levels and malaria infection during pregnancy and delivery result in reduced birth weight and an increased risk of low birth weight and premature delivery (Stanisic et al., 2015). Factors associated with LBW are preterm births (Briand et al., 2016). Chronic placental malaria is associated with an increased risk of preterm delivery (Lufele et al., 2017).

Malaria In Babies

Malaria in pregnancy can cause malaria infection in infants at the age of 6 and 12 months. Babies born to malaria-positive mothers during pregnancy are more susceptible to malaria, presumably because placental malaria causes a decrease in maternal antibody transfer, and increases the baby's susceptibility to malaria infection. Malaria in pregnancy in the second trimester and the infant's susceptibility to malaria infection are thought to be related to the length of exposure to malaria in the mother (Indrawanti et al., 2018).

Placental malaria

The risk factor for placental malaria is in pregnant women who live in rural areas and experience symptomatic malaria infection during pregnancy (Lufele et al., 2017). Plasmodium falciparum is the main cause of malaria infection in the placenta which is a side effect on mothers and babies worldwide in malaria endemic areas. Placental malaria is detected in more than 40% of pregnancies (Lufele et al., 2017). Acute placental malaria infection is associated with a doubled likelihood of developing low birth weight (Lufele et al., 2017). P. falciparum infection affects the placental weight ratio, especially in the absence of fever or chills during pregnancy (Sukma Oktavianthi et al., 2016). In African women, chronic placental infection (especially massive chronic intervillitis, accumulation of large numbers of white blood cells in the maternal blood space from the placenta) is specifically associated with growth restriction, whereas acute infection with high parasitaemia is associated with preterm delivery (Stanisic et al., 2015).

Primigravida

Primigravida women are more susceptible to malaria infection, this susceptibility will decrease in subsequent pregnancies. Primigravida are susceptible to malaria infection because malaria immunity in pregnancy has not yet formed a protective antibody response (Lufele et al., 2017) this is due to a decrease in the immune response in pregnant women. In subsequent pregnancies, women will experience repeated infections. The lack of anti-parasitic antibodies during the first pregnancy increases the parasite burden in primigravida compared to multigravida (Chandrashekar et al., 2019). The effects of iron deficiency are greatest for primigravida women, this group is at high risk of being more susceptible to various infectious diseases (Fowkes et al., 2018).

CONCLUSIONS

The impact of malaria in pregnancy that most often occurs in pregnant women is anemia, low birth weight, premature birth, placental malaria, and malaria in infants.
Pregnant women will generally experience mild anemia. In malaria endemic areas, iron deficiency and anemia are common and are exacerbated by the risk of malaria infection. Women infected with malaria during pregnancy are at risk of giving birth to babies with low birth weight. Decreased birth weight and increased risk of LBW are caused by low maternal Hb levels and malaria infection during pregnancy and childbirth. Low Hb levels and malaria infection during pregnancy and delivery result in decreased birth weight, increased risk of low birth weight and premature delivery. Symptomatic malaria infection suffered by the mother in the second trimester of pregnancy can cause placental malaria, malaria in the placenta results in a decrease in the size of the placenta. Malaria infection during pregnancy, especially in the second trimester, makes babies born more susceptible to being infected with malaria at the age of 6 to 12 months. Malaria infection is more common in primigravida because the decreased immune response in pregnant women has not yet formed a protective antibody response.

Researchers recommend that health service agencies should provide health education about the importance of iron supplements or blood boosters in pregnancy. Conduct malaria screening at every Antenatal visit (ANC), especially in each trimester for pregnant women in malaria endemic areas, or pregnant women who come from malaria endemic areas, as well as carry out preventive efforts and provide safe malaria prevention treatment for pregnant women to anticipate asymptomatic infections in those infected with the malaria parasite without symptoms. With this action, it is hoped that it can prevent the transmission of malaria, as well as relieve the burden of anemia caused by the malaria parasite in pregnant women by regularly consuming blood-enhancing tablets.

REFERENCES

